Механизм анализа данных представляет собой набор взаимодействующих друг с другом объектов встроенного языка, что позволяет разработчику использовать его составные части в произвольной комбинации в любом прикладном решении. Встроенные объекты позволяют легко организовать интерактивную настройку параметров анализа пользователем, а также позволяют выводить результат анализа в удобной для отображения форме в табличный документ.
Механизм позволяет работать как с данными, полученными из информационной базы, так и с данными, полученными из внешнего источника, предварительно загруженными в таблицу значений или табличный документ:
Применяя к исходным данным один из видов анализа, можно получить результат анализа. Результат анализа представляет собой некую модель поведения данных. Результат анализа может быть отображен в итоговом документе, или сохранен для дальнейшего использования.
Дальнейшее использование результата анализа заключается в том, что на его основе может быть создана модель прогноза, позволяющая прогнозировать поведение новых данных в соответствии с имеющейся моделью.
Например, можно проанализировать, какие товары приобретаются вместе (в одной накладной) и сохранить этот результат анализа в базе данных. В дальнейшем, при создании очередной накладной на основании сохраненного результата анализа можно построить модель прогноза, подать ей «на вход» новые данные, содержащиеся в этой накладной, и «на выходе» получить прогноз, — список товаров, которые контрагент Петров Б.С. тоже, скорее всего, приобретет, если их ему предложить:
В механизме анализа данных и прогнозирования реализовано несколько типов анализа данных:
Представляет собой механизм для сбора информации о данных, находящихся в исследуемой выборке. Этот тип анализа предназначен для предварительного исследования анализируемого источника данных.
Анализ показывает ряд характеристик непрерывных и дискретных полей. Непрерывные поля содержат такие типы как Число, Дата. Для остальных типов используются дискретные поля.При выводе отчета в табличный документ заполняются круговые диаграммы для отображения состава полей.
Данный тип анализа осуществляет поиск часто встречаемых вместе групп объектов или значений характеристик, а также производит поиск правил ассоциаций. Поиск ассоциаций может использоваться, например, для определения часто приобретаемых вместе товаров, или услуг:
Этот тип анализа может работать с иерархическими данными, что позволяет, например, находить правила не только для конкретных товаров, но и для их групп. Важной особенностью этого типа анализа является возможность работать как с объектным источником данных, в котором каждая колонка содержит некоторую характеристику объекта, так и с событийным источником, где характеристики объекта располагаются в одной колонке.
Для облегчения восприятия результата предусмотрен механизм отсечения избыточных правил.
Тип анализа поиск последовательностей позволяет выявлять в источнике данных последовательные цепочки событий. Например, это может быть цепочка товаров или услуг, которые часто последовательно приобретают клиенты:
Этот тип анализа позволяет осуществлять поиск по иерархии, что дает возможность отслеживать не только последовательности конкретных событий, но и последовательности родительских групп.
Набор параметров анализа позволяет специалисту ограничивать временные расстояния между элементами искомых последовательностей, а также регулировать точность получаемых результатов.
Кластерный анализ позволяет разделить исходный набор исследуемых объектов на группы объектов, таким образом, чтобы каждый объект был более схож с объектами из своей группы, чем с объектами других групп. Анализируя в дальнейшем полученные группы, называемые кластерами, можно определить, чем характеризуется та или иная группа, принять решение о методах работы с объектами различных групп. Например, при помощи кластерного анализа можно разделить клиентов, с которыми работает компания, на группы, для того, чтобы применять различные стратегии при работе с ними:
При помощи параметров кластерного анализа аналитик может настроить алгоритм, по которому будет производиться разбиение, а также может динамически изменять состав характеристик, учитываемых при анализе, настраивать для них весовые коэффициенты.
Результат кластеризации может быть выведен в дендрограмму — специальный объект, предназначенный для отображения последовательных связей между объектами.
Тип анализа дерево решений позволяет построить иерархическую структуру классифицирующих правил, представленную в виде дерева.
Для построения дерева решений необходимо выбрать целевой атрибут, по которому будет строиться классификатор и ряд входных атрибутов, которые будут использоваться для создания правил. Целевой атрибут может содержать, например, информацию о том, перешел ли клиент к другому поставщику услуг, удачна ли была сделка, качественно ли была выполнена работа и т. д. Входными атрибутами, для примера, могут выступать возраст сотрудника, стаж его работы, материальное состояние клиента, количество сотрудников в компании и т. п.
Результат работы анализа представляется в виде дерева, каждый узел которого содержит некоторое условие. Для принятия решения, к какому классу следует отнести некий новый объект, необходимо, отвечая на вопросы в узлах, пройти цепочку от корня до листа дерева, переходя к дочерним узлам в случае утвердительного ответа и к соседнему узлу в случае отрицательного.
Набор параметров анализа позволяет регулировать точность полученного дерева:
Модели прогноза, создаваемые механизмом, представляют собой специальные объекты, которые создаются из результата анализа данных, и позволяют в дальнейшем автоматически выполнять прогноз для новых данных.
Например, модель прогноза поиска ассоциаций, построенная при анализе покупок клиентов, может быть использована при работе с осуществляющим покупку клиентом, для того, чтобы предложить ему товары, которые он с определенной степенью вероятности приобретет вместе с выбранными им товарами.